A new ionic liquid modified polymer gel containing methylimidazolium groups (poly(MIA)) is proposed as a sorbent for the separation and enrichment of trace inorganic and organic arsenic species in surface waters. The poly(MIA) was synthesized by chemical modification of polymeric precursor using post-polymerization modification of poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate). The composition, structure, morphology, and surface properties of the prepared particles were characterized using elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption–desorption measurements. Optimization experiments showed that at pH 8, monomethylarsonic acid (MMAs), dimethylarsinic acid (DMAs), and As(V) were completely retained on the poly(MIA), while the sorption of As(III) was insignificant. The desorption experiments revealed that due to the weaker binding of organic arsenic species, selective elution with 1 mol/L acetic acid for MMAs + DMAs, followed by elution with 2 mol/L hydrochloric acid for As(V), ensured their quantitative separation. The adsorption kinetic and mechanism were defined. The analytical procedure for As(III), As(V), MMAs, and DMAs determination in surface waters was developed and validated through the analysis of certified reference material.