Antioxidants and tyrosinase inhibitory components were successfully screened and separated from Rosa rugosa cv. 'Plena' by high-performance liquid chromatography microfractionation bioactive screening combined with several separation and purification methods. Ethyl acetate extract of Rosa rugosa cv.'Plena' showed high antioxidant activity and tyrosinase inhibitory activity. Highspeed countercurrent chromatography, silica gel column chromatography, and semi-preparative high-performance liquid chromatography were used for the preparative separation of four bioactive components from ethyl acetate extract. Two tyrosinase-inhibiting active substances, flavogallonic acid, and N 1 -N 5 -N 10tri-4-p-coumaroylspermidine, were isolated from Rosa rugosa cv. 'Plena', and they showed great monophenolase inhibition activity (half-maximal inhibitory concentration: 664.60 and 23.77 μg/ml, respectively) and excellent diphenolase inhibition activity (half-maximal inhibitory concentration: 23 614.61 and 16.80 μg/ml, respectively). Meanwhile, gallic acid, flavogallonic acid, and ellagic acid were shown to have excellent 1,1-diphenyl-2-picryl-hydrazyl antioxidant activity (half maximal inhibitory concentration: 6.66, 20.17, and 13.45 μg/ml), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) antioxidant activity (half maximal inhibitory concentration: 3.53, 3.83, and 2.78 μg/ml). Molecular docking revealed that flavogallonic acid and N 1 -N 5 -N 10 -tri-4-p-coumaroylspermidine had a strong binding affinity (-9.3 and -10 kcal/mol, respectively) to tyrosinase through hydrogen bonding and hydrophobic interactions.