Genetic analyses of the domestication syndrome have revealed that domestication-related traits typically have a very similar genetic architecture across most crops, being conditioned by a small number of quantitative trait loci (QTL), each with a relatively large effect on the phenotype. To date, the domestication of sunflower (Helianthus annuus L.) stands as the only counterexample to this pattern. In previous work involving a cross between wild sunflower (also H. annuus) and a highly improved oilseed cultivar, we found that domestication-related traits in sunflower are controlled by numerous QTL, typically of small effect. To provide insight into the minimum genetic changes required to transform the weedy common sunflower into a useful crop plant, we mapped QTL underlying domestication-related traits in a cross between a wild sunflower and a primitive Native American landrace that has not been the target of modern breeding programs. Consistent with the results of the previous study, our data indicate that the domestication of sunflower was driven by selection on a large number of loci, most of which had small to moderate phenotypic effects. Unlike the results of the previous study, however, nearly all of the QTL identified herein had phenotypic effects in the expected direction, with the domesticated allele producing a more crop-like phenotype and the wild allele producing a more wild-like phenotype. Taken together, these results are consistent with the hypothesis that selection during the post-domestication era has resulted in the introduction of apparently maladaptive alleles into the modern sunflower gene pool.