Allium L. is one of the largest genera of the Amaryllidaceae family, with more than 920 species including many economically important species used as vegetables, spices, medicines, or ornamental plants. Currently, DNA barcoding tools are being successfully used for the molecular taxonomy of Allium. A total of 46 Allium species were collected from their native areas, and DNA was extracted using the IBRC DNA extraction kit. We used specific primers to PCR amplify matK. DNA sequences were edited and aligned for homology, and a phylogenetic tree was constructed using the neighbor-joining method. The results show thymine (38.5%) was the most frequent and guanine (13.9%) the least frequent nucleotide. The matK regions of the populations were quite highly conserved, and the amount of C and CT was calculated at 0.162 and 0.26, respectively. Analysis of the nucleotide substitution showed C-T (26.22%) and A-G (8.08%) to have the highest and lowest percent, respectively. The natural selection process dN/dS was 1.16, and the naturality test results were-1.5 for Tajima's D and-1.19 for Fu's Fs. The NJ dendrogram generated three distinct clades: the first contained Allium austroiranicum and A. ampeloprasum; the second contained A. iranshahrii, A. bisotunense, and A. cf assadi; and the third contained A. rubellum and other species. In this study, we tested the utility of the matK region as a DNA barcode for discriminating Allium. species.