In this paper we explore the design of sequent calculi operating on graphs. For this purpose, we introduce logical connectives allowing us to extend the well-known correspondence between classical propositional formulas and cographs. We define sequent systems operating on formulas containing such connectives, and we prove, using an analyticity argument based on cut-elimination, that our systems provide conservative extensions of multiplicative linear logic (without and with mix) and classical propositional logic. We conclude by showing that one of our systems captures graph isomorphism as logical equivalence and that it is sound and complete for the graphical logic $$\textsf{GS}$$
GS
.