The high alcohol content in wine usually has a negative impact on its sensory properties, but can also affect the general health of the consumers. The possibility to reduce ethanol production in wines during fermentation involves the use of different yeast strains characterized by the increased production of fermentation by‐products (glycerol, 2,3‐butanediol, etc.) from the available sugar. The activity of these strains should not impair the sensory properties of the wine. In general, the use of genetically and evolutionarily (non‐GM) engineered Saccharomyces cerevisiae strains is still not close enough to commercial application, and therefore, it is unavailable for wine producers. Thus, the aim of this study was to examine the possibility of reducing the production of ethanol in wines using different selected yeast strains (S. cerevisiae, Saccharomyces bayanus, Torulaspora delbrueckii, and Metschnikowia pulcherrima) available at the market. The application of individual yeast and sequential inoculation for wine alcoholic fermentation was examined. The achieved effects were evaluated by determining the content of ethanol, as well as fermentation by‐products (glycerol and volatile acids) and aromatic components in wine samples. Depending on the strain/s used, a decrease in ethanol content of up to 0.9% v/v was recorded in comparison with fermentation by S. cerevisiae alone. The sensory analysis of produced wine showed significant differences in taste and flavor. The results of the experiment conducted at the laboratory level and with the use of sterile must were compared to the ones from the scale‐up experiment in real vinification conditions. The observed differences in the alcohol content of produced wines were significantly lower.