Aims: In the present study, it was investigated the antagonistic behaviour of Metschnikowia pulcherrima, as biocontrol agent, against the main wine yeast species involved in the winemaking process. Methods and Results: Seven strains of M. pulcherrima were evaluated for the antimicrobial activity against 114 yeast strains belonging to Pichia, Candida, Hanseniaspora, Kluyveromyces, Saccharomycodes, Torulaspora, Brettanomyces and Saccharomyces genera. Results showed both different inter-generic and intrageneric responses to the antimicrobial action of M. pulcherrima strains. Interestingly, the antimicrobial activity of M. pulcherrima did not have any influence on the growth of Saccharomyces cerevisiae. Instead, M. pulcherrima displayed a broad and effective antimicrobial action on undesired wild spoilage yeasts, such as Brettanomyces/Dekkera, Hanseniaspora and Pichia genera. Fermentation trials carried out in synthetic grape must confirmed the antimicrobial activity of M. pulcherrima, determining the early death of the non-Saccharomyces co-inoculated cultures. Conclusions: The antimicrobial activity of M. pulcherrima does not seem due to proteinaceous compounds such as killer phenomenon, but to the pulcherriminic acid (the precursor of pulcherrimin pigment) that depletes iron present in the medium, making it not available to the other yeasts. Significance and Impact of the Study: These data agree with and further support the potential use of selected M. pulcherrima strains in controlled multistarter fermentations with S. cerevisiae starter cultures.
Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.
The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.