With rapid development of computing technology, Bayesian statistics have increasingly gained more attention in various areas of public health. However, the full potential of Bayesian sequential methods applied to vaccine safety surveillance has not yet been realized, despite acknowledged practical benefits and philosophical advantages of Bayesian statistics. In this paper, we describe how sequential analysis can be performed in a Bayesian paradigm in the field of vaccine safety. We compared the performance of the frequentist sequential method, specifically, Maximized Sequential Probability Ratio Test (MaxSPRT), and a Bayesian sequential method using simulations and a real world vaccine safety example. The performance is evaluated using three metrics: false positive rate, false negative rate, and average earliest time to signal. Depending on the background rate of adverse events, the Bayesian sequential method could significantly improve the false negative rate and decrease the earliest time to signal. We consider the proposed Bayesian sequential approach to be a promising alternative for vaccine safety surveillance.