APPEARED IN ACM PODS-2009. A sliding windows model is an important case of the streaming model, where only the most "recent" elements remain active and the rest are discarded in a stream. The sliding windows model is important for many applications (see, e.g., Babcock, Babu, Datar, Motwani and Widom (PODS 02); and Datar, Gionis, Indyk and Motwani (SODA 02)). There are two equally important types of the sliding windows model -windows with fixed size, (e.g., where items arrive one at a time, and only the most recent n items remain active for some fixed parameter n), and bursty windows (e.g., where many items can arrive in "bursts" at a single step and where only items from the last t steps remain active, again for some fixed parameter t).Random sampling is a fundamental tool for data streams, as numerous algorithms operate on the sampled data instead of on the entire stream. Effective sampling from sliding windows is a nontrivial problem, as elements eventually expire. In fact, the deletions are implicit; i.e., it is not possible to identify deleted elements without storing the entire window. The implicit nature of deletions on sliding windows does not allow the existing methods (even those that support explicit deletions, e.g., Cormode, Muthukrishnan and Rozenbaum (VLDB 05); Frahling, Indyk and Sohler (SOCG 05)) to be directly "translated" to the sliding windows model. One trivial approach to overcoming the problem of implicit deletions is that of over-sampling. When k samples are required, the over-sampling method maintains k > k samples in the hope that at least k samples are not expired. The obvious disadvantages of this method are twofold: (a) It introduces additional costs and thus decreases the performance; and (b) The memory bounds are not deterministic, which is atypical for * Supported in part by NSF grant 0830803