Every year, more than half a million children die due to diarrheal diseases. Recent studies have identified the most important etiologies of diarrheal disease are enterotoxigenic and enteropathogenic E. coli, Shigella spp., rotavirus, norovirus and Cryptosporidium spp. These etiologies are unsurprisingly characterized by a combination of high shedding, high infectivity, and transmissibility through multiple environmental reservoirs. The relative importance of the transmission routes is likely site-specific. So the impact of interventions, which typically target only one or two environmental reservoirs, is likely also site-specific. The factors influencing the transmission routes most important for diarrheal disease are complex, including - at a minimum - etiology of endemic disease; and water, sanitation, and hygiene infrastructure and practices. The site-specific nature - and complexity of transmission - helps explain the observed variation in impacts of water, sanitation, and hygiene interventions. It may also render efforts to estimate or quantify global means for interventions' impacts irrelevant. The theme of this Perspective is that greater reductions in diarrheal disease transmission in LMICs can be achieved by designing interventions to interrupt the most important environmental transmission pathways. Intervention choice should be informed by site-specific conditions, most notably: diarrheal etiology and existing water, sanitation, and hygiene infrastructure and practices. The theme is discussed through the lens of the characteristics of the most important diarrheal diseases (shedding, infectivity, growth, and persistence) and the general characteristics of environmental reservoirs (exposure pathways and fecal contamination). The discussion highlights when interventions - and combinations of interventions - will be most effective at reducing diarrheal disease burden.