Filarial parasites are known to induce a large range of immunoregulatory mechanisms, including the induction of alternatively activated macrophages and regulatory T cells. These mechanisms are used to evade and down‐modulate the host’s immune system, to support parasite survival. Several reports have focused on some of these mechanisms, in humans and murine models, but the complex immunoregulatory networks associated with filarial infections remain unclear. Recent publications have conferred a role for regulatory T cells in the ability of helminth parasites to modulate human immune responses, such cells promoting the induction of the non‐complement‐fixing immunoglobulin G4 (IgG4). High plasma concentrations of IgG4 have been reported in hypo‐responsive and asymptomatic cases of helminth infection. In both human lymphatic filariasis and onchocerciasis, the asymptomatic infections are characterised by high plasma concentrations of IgG4 (compared with those of IgE) and of the complement‐fixing antibodies IgG1, IgG2 and IgG3. In asymptomatic filarial infection, elevations in IgG4 are also often associated with high worm loads and with high plasma levels of the immunomodulatory interleukin‐10. Here, various aspects of the induction of IgG4 in humans and it roles in the immunomodulation of the human responses to filarial parasites are reviewed.