Wolbachia, an endosymbiont present in filarial nematodes, have been implicated in a variety of roles, including the worm development and survival. Elucidation of the role of Wolbachia in filarial nematode biology and pathogenesis has become the focus of many studies and its contribution to parasite survival or immune response is still unclear. Recombinant Wolbachia HSP60 decreases T cell activation and lymphoproliferation in filarial infected people compared to endemic controls as observed by the assessment of T cell activation markers and cytokine responses in the peripheral blood mononuclear cells. Reduced T cell activation may be linked to T regulatory cell activity since it is associated with increased expression of CTLA4 and CD25 on CD4+ T cells in filarial infected group upon stimulation with recombinant Wolbachia HSP60. In addition, elevated interleukin-10 and TGF-β cytokines corroborate the reduced CD4+ T cell activation and interferon-γ observed upon recombinant Wolbachia HSP60 stimulation in filarial patients. Hence, these findings indicate that Wolbachia HSP60 may also contribute to the immune modulation seen in filarial patients.
Wolbachia surface protein (WSP), which is the most abundantly expressed protein of Wolbachia from the human filarial parasite Brugia malayi, was chosen for the present study. B-cell epitope prediction of the WSP protein sequence indicates a high antigenicity, surface probability and hydrophilicity by DNA STAR software analysis. ProPred analysis suggests the presence of HLA class II binding regions in the WSP protein that contribute to T-cell responses and isotype reactivity. In order to validate these findings, the gene coding for endosymbiont WSP was PCR-amplified from the genomic DNA of the human filarial parasite Brugia malayi and cloned in T-7 expression vector pRSET-A. Western blot and ELISA at the total IgG level with recombiant WSP indicated a significantly elevated reactivity in CP compared to MF, EN and NEN individuals. Isotype ELISA also suggested an elevated reactivity in CP patients at the IgG1 level. In contrast, WSP-specific IgG4 levels were found to be elevated in MF patients compared to CP and EN. Besides this, WSP-specific IgE levels indicated an elevated reactivity in CP and MF patients compared to normals. Observations from ELISA supported the in silico predictions that indicate the presence of Band T-cell epitopes. Hence, a combinatorial approach of in silico predictions and wet-lab studies provides interesting insights into the role of Wolbachia proteins in filarial pathogenesis.
Immune responses to recombinant Brugia malayi pepsin inhibitor homolog (rBm-33) were investigated in patients with human lymphatic filariasis (microfilaremics (MF) and chronic pathology (CP)) along with endemic normals (EN). Flow cytometric analysis (24 h) revealed CD4+ T cell activation in patients (MF and CP) compared to normals (EN), with increased expression of CD69 and diminished levels of CD62L and CD127. This was associated with an elevated expression of CD154 but not CD28 and CTLA4 in CP patients. However, Bm-33-induced cytokine expression profile (IL-1β, IL-12, IL-8, IFN-γ, IL-10 and TGF-β) did not exhibit any significant difference between normals and patients at the same time point. Although CD4+ T cell activation was observed initially in filarial patients (24 h), lymphoproliferation studies (96 h) suggested diminished proliferation compared to normals, indicating functional inactivation in the former upon prolonged antigen exposure. This indicates that rBm-33 induces an early T cell activation in MF and CP patients followed by a decreased lymphoproliferation that might contribute to immune suppression in these individuals.
Human lymphatic filariasis is a debilitating parasitic disease characterized by downregulation of the host’s immune response in asymptomatic carriers along with profound hyperreactivity in chronic patients apart from putatively immune endemic normals. The endosymbiont Wolbachia, a bacterium of filarial nematodes has received much attention as possible chemotherapeutic target and its involvement in disease pathogenesis. The role of recombinant Wolbachia surface protein (rWSP), one of the most abundantly expressed proteins of the endosymbiont, in modulating cell-mediated immune responses in patients harboring Wuchereria bancrofti infections was evaluated in the current study. rWSP-induced lymphoproliferation with peripheral blood mononuclear cells suggested an impaired proliferative response in asymptomatic microfilaremic (MF) and symptomatic chronic pathology (CP) patients compared to endemic normals (EN). This was further supported by a significantly diminished expression of CD69 along with elevated levels of CD127 and CD62L in filarial patients (MF and CP) compared to EN. Further, rWSP induced the expression of regulatory T cell markers CTLA-4 and CD25 along with suppressor cytokines IL-10 and TGF-β in MF and CP patients compared to EN. However, the rWSP-stimulated expression of IFN-γ was diminished significantly in filarial patients compared to endemic normals. Thus, these findings suggest that WSP may also contribute to the suppression of immune responses seen in filarial patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.