Background: The X-linked gene WTX (also called AMER1), has been reported to act as a tumor suppress gene in Wilms tumor. Our previous study reported that WTX expression was significantly reduced in gastric cancer (GC), but the function and mechanism of WTX loss had not been fully elucidated yet. Methods: WTX/miR-20a-5p expression was analyzed in paraffin-embedded archived GC tissues and validated in public databases. KEGG pathway analyses were performed to explore the mechanism of WTX in GC progression. The role of WTX/miR-20a-5p in cell growth, migration, invasion and angiogenesis was investigated in vitro and in vivo. Western blot, immunohistochemistry, RT-PCR, luciferase assay, and Co-immunoprecipitation (Co-IP) were used to detect the regulation of WTX and PI3K/AKT/mTOR signaling by miR-20a-5p.Results: We revealed that WTX served as a tumor suppressor whose loss associated with the aggressive feature of GC by showing hyperproliferation in vitro and high metastasis phenotype in vivo. And WTX expression level was positively correlated with the overall survival of GC patients. Microarray, bioinformatics analysis, and verification experiments showed that WTX loss activated PI3K/AKT/mTOR pathway, and promoted the proliferation and invasion of GC cells. We also discovered that the miR-20a-5P aberrant upregulation was one of the reasons inducing WTX loss in GC which stimulated PI3K phosphorylation to activate PI3K/AKT/mTOR signaling pathway, thus promoted GC progression.Conclusions: This study unveiled the mechanism of GC progression which was, at least partially, caused by miR-20a-5p aberrant upregulation which inhibited WTX expression and thus activate PI3K/AKT/mTOR signaling pathway. It provided a comprehensive understanding of the action of miR-20a-5p/WTX/PI3K/AKT/mTOR signaling pathway in the progression and metastasis of GC.