While biological alterations associated with childhood maltreatment (CM) have been found in affected individuals, it remains unknown to what degree these alterations are biologically transmitted to the next generation. We investigated intergenerational effects of maternal CM on DNA methylation and gene expression in N = 113 mother-infant dyads shortly after parturition, additionally accounting for the role of the FKBP5 rs1360780 genotype. Using mass array spectrometry, we assessed the DNA methylation of selected stress-response-associated genes (FK506 binding protein 51 [FKBP5], glucocorticoid receptor [NR3C1], corticotropin-releasing hormone receptor 1 [CRHR1]) in isolated immune cells from maternal blood and neonatal umbilical cord blood. In mothers, CM was associated with decreased levels of DNA methylation of FKBP5 and CRHR1 and increased NR3C1 methylation, but not with changes in gene expression profiles. Rs1360780 moderated the FKBP5 epigenetic CMassociated regulation profiles in a gene × environment interaction. In newborns, we found no evidence for any intergenerational transmission of CM-related methylation profiles for any of the investigated epigenetic sites. These findings support the hypothesis of a long-lasting impact of CM on the biological epigenetic regulation of stress-response mediators and suggest for the first time that these specific epigenetic patterns might not be directly transmitted to the next generation. Childhood maltreatment (CM) is so far an underestimated global phenomenon present in all societies and social classes. CM comprises experiences of physical, sexual and emotional abuse, as well as physical and emotional neglect during childhood and adolescence and constitutes a major threat to the child's mental and physical development with long-term consequences for both mental and somatic health 1-4. The epigenetic alterations in DNA methylation occurring in the aftermath of CM are pivotal for the adaptation to the early life environment 5 , and can thereby affect gene expression levels 6 and molecular responses to environmental stressors. Epigenetic alterations within key player genes of the hypothalamic-pituitary-adrenal (HPA) axis, the main coordinator of the physiological stress response (Fig. 1), are discussed to biologically contribute to health consequences observed in CM-affected individuals 7,8. Accordingly, mounting evidence suggests that CM is associated with alterations in DNA methylation within the glucocorticoid receptor gene (NR3C1) 9-13 and its regulatory co-chaperone FK506-binding protein 51 (FKBP51), which is encoded by the FKBP5 gene 13,14. As depicted in Fig. 1, a balanced regulation between the GR