This study aims to elaborate the relevance of trauma severity and traumatic injury pattern in different multiple and/or polytrauma models by comparing five singular trauma to two different polytrauma (PT) models with high and one multiple trauma (MT) model with low injury-severity score (ISS). The aim is to provide a baseline for reducing animal harm according to 3Rs by providing less injury as possible in polytrauma modeling. Mice were randomly assigned to 10 groups: controls (Ctrl; n = 15), Sham (n = 15); monotrauma groups: hemorrhagic shock (HS; n = 15), thoracic trauma (TxT; n = 18), osteotomy with external fixation (Fx; n = 16), bilateral soft tissue trauma (bSTT; n = 16) or laparotomy (Lap; n = 16); two PT groups: PT I (TxT + HS + Fx; ISS = 18; n = 18), PT II (TxT + HS + Fx + Lap; ISS = 22; n = 18), and a MT group (TxT + HS + bSTT + Lap, ISS = 13; n = 18). Activity and mortality were assessed. Blood gas analyses and organ damage markers were determined after 6 h. Significant mortality occurred in TxT, PT and MT (11.7%). Activity decreased significantly in TxT, HS, both polytrauma and MT
vs
. Ctrl/Sham. PT-groups and MT had significantly decreased activity
vs
. bsTT, Lap or Fx. MT had significantly lower pCO
2
vs
. Ctrl/Sham, Lap or bsTT. Transaminases increased significantly in PT-groups and MT
vs
. Ctrl, Sham or monotrauma. Traumatic injury pattern is of comparable relevance as injury severity for experimental multiple or (poly)trauma modeling.