The Ras-extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice.
Mitogen-activated protein kinases (MAPKs) are components of intracellular signaling modules that control a myriad of cellular processes. MAPK modules consist of 3 core protein kinase components. The most downstream is the actual MAPK, an S/T kinase that phosphorylates the transcription factors, cytoskeletal elements, or other kinases that are the targets of regulation by signaling cascades started at the cell surface. A MAPK is activated by an upstream MAPK kinase (MAP2K), which, in turn, is activated by a MAP2K kinase (MAP3K). MAP3Ks are usually at the receiving end of signals derived from small, monomeric GTPases such as the Ras family or by other more intricate mechanisms (1). In mammalian cells, the prototypical MAPK module is composed of the MAPKs extracellular signal-regulated kinases 1 and 2 (ERK1/2), the MAP2Ks MEK1/2, and the MAP3K Raf. ERK1/2 regulate normal cellular responses to multiple growth factors and cytokines in proliferation, differentiation, and apoptosis (2, 3).Multiple studies suggest an important role for the Ras-ERK1/2 pathway in the development, normal maintenance, aging, and pathology of mammalian skeletal muscle. Thus, ERK1/2 activity has both stimulatory and inhibitory roles in the differentiation of cultured skeletal myotubes that vary with the stage of this protracted process (4-8). ERK1/2 have been implicated in the maintenance of adult skeletal muscle mass (9) and, seemingly paradoxically, in the control of both the fast-twitch (10) and the slow-twitch (11) fiber type phenotypes. Alterations in levels of ERK1/2 activity in aging rodent muscle correlate with sarcopenia (12), the loss of muscle mass and ...