The possibility that some aspects of the shapes of solid objects can be perceived through dynamic touch, even when the objects are not touched, but simply wielded with a handle, was investigated in four experiments. Wooden solids were constructed of three sizes and five shapes: hemisphere, cylinder, parallelepiped, cone, and pyramid. Experiments 1 and 2 involved comparisons (judgments of same or different) between and among wielded objects of the same mass. In Experiments 3 and 4, subjects were required to wield an object and to select a match from a visible arrangement of objects of the five shapes; the wielded objects were of two sizes, each different from that of the visible objects. The success of subjects at these tasks, and the patternings of errors, are seen to involve the characteristic moment of inertia profiles of each shape, and a ratio of the object's resistances to rotation around orthogonal axes is shown to be a strong predictor of performance in the identification experiments. The results are discussed with reference to dynamic touch and to the notion of shape invariants that do not reduce to aspects of object surface.Existing research on nonvisual perception of object shape (e.g., J.