Objectives
Parkinson disease (PD) is associated with cognitive impairments. However, the underlying neural mechanism of cognitive impairments in PD is still not clear. This study aimed to investigate the anatomic alternations of gray matter in PD patients with mild cognitive impairment (MCI) and their associations with neurocognitive measurements.
Methods
T1-weighted magnetic resonance imaging (MRI) data were acquired from 23 PD patients with MCI, 23 PD patients without MCI, and 23 matched healthy controls. The MRI data were analyzed using voxel-based morphometry (VBM) and surfaced-based morphometry (SBM) methods to assess the structural changes in gray matter volume and cortical thickness respectively. Receiver operating characteristic (ROC) analysis was used to examine the diagnostic accuracies of the indexes of interest. The correlations between the structural metrics and neurocognitive assessments (e.g., Montreal cognitive assessment, MOCA; Mini-mental state examination, MMSE) were further examined.
Results
PD patients with MCI showed reduced gray matter volume (GMV) in the frontal cortex (e.g., right inferior frontal gyrus and middle frontal gyrus) and extended to insula as well as cerebellum compared with the healthy controls and PD patients without MIC. Thinner of cortical thickens in the temporal lobe (e.g., left middle temporal gyrus and right superior temporal gyrus) extending to parietal cortex (e.g., precuneus) were found in the PD patients with MCI relative to the healthy controls and PD patients without MCI.ROC analysis indicated that the area under the ROC curve (AUC) values in the frontal, temporal, and subcortical structures (e.g., insula and cerebellum) could differentiate the PD patients with MCI and without MCI and healthy controls. Furthermore, GMV of the right middle frontal gyrus and cortical thickness of the right superior temporal gyrus were correlated with neurocognitive dysfunctions (e.g., MOCA and MMSE) in PD patients with MCI.
Conclusion
This study provided further evidence that PD with MCI was associated with structural alternations of brain. Morphometric analysis focusing on the cortical and subcortical regions could be biomarkers of cognitive impairments in PD patients.