2022
DOI: 10.1155/2022/4695136
|View full text |Cite
|
Sign up to set email alerts
|

SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation

Abstract: A U-Net-based network has achieved competitive performance in retinal vessel segmentation. Previous work has focused on using multilevel high-level features to improve segmentation accuracy but has ignored the importance of shallow-level features. In addition, multiple upsampling and convolution operations may destroy the semantic feature information contained in the decoder layer. To address these problems, we propose a scale and feature aggregate network (SFA-Net), which can make full use of multiscale high-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
references
References 51 publications
0
0
0
Order By: Relevance