2022
DOI: 10.3390/rs14020320
|View full text |Cite
|
Sign up to set email alerts
|

ShadowDeNet: A Moving Target Shadow Detection Network for Video SAR

Abstract: Most existing SAR moving target shadow detectors not only tend to generate missed detections because of their limited feature extraction capacity among complex scenes, but also tend to bring about numerous perishing false alarms due to their poor foreground–background discrimination capacity. Therefore, to solve these problems, this paper proposes a novel deep learning network called “ShadowDeNet” for better shadow detection of moving ground targets on video synthetic aperture radar (SAR) images. It utilizes f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(5 citation statements)
references
References 63 publications
0
3
0
2
Order By: Relevance
“…Walaupun banyak digunakan untuk deteksi objek seperti kerusakan jalan [1], transportasi [5], hewan [7], penggunaannya untuk deteksi bayangan masih terbatas. Penelitian oleh Bao dkk [6], menggunakan Faster RCNN untuk deteksi bayangan pada video Synthetic Aperture Radar (SAR), menunjukan akurasi yang lebih tinggi sebesar 9% dibandingkan dengan tingkat dasar eksperimental Faster R-CNN.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Walaupun banyak digunakan untuk deteksi objek seperti kerusakan jalan [1], transportasi [5], hewan [7], penggunaannya untuk deteksi bayangan masih terbatas. Penelitian oleh Bao dkk [6], menggunakan Faster RCNN untuk deteksi bayangan pada video Synthetic Aperture Radar (SAR), menunjukan akurasi yang lebih tinggi sebesar 9% dibandingkan dengan tingkat dasar eksperimental Faster R-CNN.…”
Section: Pendahuluanunclassified
“…Pengujian sistem deteksi dilakukan dengan menentukan nilai confusion matrix. Kami menggunakan nilai F1-score sebagai indeks akurasi karena memungkinkan untuk menemukan titik keseimbangan antara tingkat deteksi yang tinggi (recall tinggi) dan tingkat peringatan palsu yang rendah (presisi rendah) [6]. Dengan demikian, nilai F1-score dapat memberikan indikasi tentang seberapa baik sistem dapat mengenali bayangan yang benar sambil meminimalkan kesalahan dalam memberikan peringatan palsu.…”
Section: Evaluasi Menggunakan Confusion Matrixunclassified
“…Bao et al proposed a deep learning model for shadow detection of moving ground targets on video Synthetic Aperture Radar (SAR) images [94]. ground discrimination capacity of model.…”
Section: B State-of-the-art Algorithmsmentioning
confidence: 99%
“…Current conventional SAR moving target shadow detectors have low precision due to their incomplete feature-extraction capacities between complex scenes. To alleviate this issue, the contribution by Bao et al [15] presented a new DLN called ShadowDeNet. This network was invented for better shadow detection of moving ground targets on signal SAR data.…”
Section: Overview Of Contributionsmentioning
confidence: 99%