Micropiles were first used to repair the damaged structures of “Scuola Angiulli” in Naples after World War II. They are known as small versions of regular piles, with a diameter of less than 30 cm, and are made of high-strength, steel casing and/or threaded bars, produce minimal noise and vibration during installation, and use lightweight machinery. They are capable to withstand axial loads and moderate lateral loads. They are used for underpinning existing foundations and to restore historical buildings and to support moderate structures. In the literature, several reports can be found dealing with micropiles, yet little has been reported on Micropiled-Raft Foundations (MPR). This technology did not receive the recognition it deserved until the 1970s when its technical and economic benefits were noted. A series of laboratory tests and numerical modeling were developed to examine the parameters governing the performance of MPR, including the relative density of the sand, the micropile spacing, and the rigidity of the raft. The numerical model, after being validated with the present experimental results, was used to generate data for a wide range of governing parameters. The theory developed by Poulos (2001) (PDR) to predict the capacity of pile-raft foundations was adopted for the design of MPR. The PDR method is widely used by geotechnical engineers because of its simplicity.