The binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, harmonic oscillator-like and rectangular well-like potentials are calculated as a function of dot radius using a variational procedure within the effective mass approximation. The calculations of the binding energy of the donor impurity as a function of the system geometry have been investigated. A comparison of the eigenstates of a hydrogenic impurity in all the confinements of dots is discussed in detail. We have computed and compared the susceptibility for a hydrogenic donor in a spherical confinement, harmonic oscillator-like and rectangular well-like potentials for a finite QD and observe a strong influence of the shape of confining potential and geometry of the dot on the susceptibility.