Considering fracture constraint is an efficient way to describe stress–strain field and fracture toughness more accurately, so it is necessary to realise the relationship with in‐plane and out‐of‐plane constraint for different standard specimens. In this paper, three‐dimensional finite element method is applied to study the in‐plane and out‐of‐plane constraint for both cruciform specimen and single edge notched bending specimen made from commercial pure titanium. Crack length and in‐plane loading as the factors affecting in‐plane constraint, and thickness as the factor affecting the out‐of‐plane constraint are used to study the effect on both in‐plane and out‐of‐plane constraint in this paper. From the results, in‐plane and out‐of‐plane constraint are both related to specimen geometries and loading styles. And there exist relationships with in‐plane and out‐of‐plane constraint because of factors for different specimens. Depending on crack length, out‐of‐plane constraint increases with in‐plane constraint. While depending on transverse loading, out‐of‐plane constraint decreases with in‐plane constraint. In addition, when the in‐plane constraint of a specimen is higher, in‐plane constraint increases with out‐of‐plane constraint (thickness). When the in‐plane constraint is lower, in‐plane constraint almost remains unchanged with out‐of‐plane constraint.