The U.S. Department of Energy (DOE) Fissile Materials Disposition Program (FMDP) is pursuing reactor irradiation of mixed uranium-plutonium oxide (MOX) fuel for disposal of surplus weapons-usable plutonium. Since most of the MOX fuel utilization experience has been with reactor-grade plutonium, it is desired to demonstrate that the unique properties of the surplus weapons-derived or weapons-grade (WG) plutonium do not compromise the applicability of this MOX experience base. A related question to be addressed for weapons-derived MOX fuel is that of ductility loss of the cladding. While irradiation induced loss of ductility has long been known and quantified for many cladding materials, the potential synergistic effects of irradiation and the unique constituents (i.e., gallium) of weapons-derived MOX fuel are not known. As part of an extensive fuel qualification research program conducted by Oak Ridge National Laboratory (ORNL), a new test method was developed and validated to measure the room temperature ductility and hoop tensile properties of MOX fuel cladding. The cladding material is a zirconium alloy designated as Zr-4 manufactured by Sandvick Corporation. This paper is a summary of the test method developed and of demonstration test results obtained for MOX cladding irradiated to 21 GWd/MT [7 × 1020 n/cm2 (E > 1 MeV)].
Oak Ridge, Tennessee USA Cruciform beam fracture mechanics specimens-have been developed in the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, farfield, out-of-plane biaxial bending stress component in the test section that approximates the nonlinear biaxial stresses resulting from pressurized-thermal-shock or pressure-temperature loading of a nuclear reactor pressure vessel (RPV). Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Two and threeparameter Weibull models have been calibrated using a new scheme (developed at the University of Illinois) that maps toughness data from test specimens with distinctly different levels of crack-tip constraint to a small scale yielding (SSY) Weibull stress space. These models, using the new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the 6, integral definition, have been shown to correlate the experimentally observed biaxial effect in cruciform specimens, thereby providing a scaling mechanism between uniaxial and biaxial loading states.
data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST ReportNo. 150.
A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed. This technology is for application to the safety assessment of RPVs containing postulated shallow-surface flaws. It has been shown that relaxation of crack-tip constraint causes shallow-flaw fracture toughness of RPV material to have a higher mean value than that for deep flaws in the lower transition temperature region. Cruciform beam specimens developed at Oak Ridge National Laboratory (ORNL) introduce far-field, out-of-plane biaxial stress components in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock (PTS) loading of an RPV. The biaxial stress component has been shown to increase stress triaxiality (constraint) at the crack tip, and thereby reduce the shallow-flaw fracture toughness enhancement. The cruciform specimen permits controlled application of biaxial loading ratios, resulting in controlled variation of crack-tip constraint. An extensive matrix of intermediate-scale cruciform specimens with a uniform depth surface flaw was previously tested and demonstrated a continued decrease in shallow-flaw fracture toughness with increasing biaxial loading. This paper describes the test results for a series of large-scale cruciform specimens with a uniform depth surface flaw. These specimens were all of the same size with the same depth flaw and were tested at the same temperature and biaxial load ratio (1:1). The configuration is the same as the previous set of intermediate-scale tests, but has been scaled upward in size by 150 percent. These tests demonstrated the effect of biaxial loading and specimen size on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. For specimens tested under full biaxial (1:1) loading at test temperatures in the range of 23°F (−5°C) to 34°F (1°C), toughness was reduced by approximately 15 percent for a 150-percent increase in specimen size. This decrease was slightly greater than the predicted reduction for this increase in specimen size. The size corrections for 1/2T C(T) specimens did not predict the experimentally determined mean toughness values for larger size shallow-flaw specimens tested under biaxial (1:1) loading in the lower transition temperature region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.