Hyperspectral imaging (HSI) is a popular mode of remote sensing imaging that collects data beyond the visible spectrum. Many classification techniques have been developed in recent years, since classification is the most crucial task in hyperspectral image processing. Furthermore, extracting features from hyperspectral images is challenging in many scenarios. The semi-supervised classification of HSI is motivated by the Cycle-GAN method that has been proposed in this research paper. Since the proposed HSI classification method is semi-supervised, it makes extensive use of the labelled samples, which are short and have numerous unlabelled images. The research is carried out in two phases. First, to extract the spectral–spatial features, the minimum noise fraction is adopted. And, second, the classification of the semi-supervised method is done by the cycle-GANs. Subsequently, the proposed architecture is implemented on three standard hyperspectral dataset methods. As a result, the performance comparison is carried out in the same field as state-of-the-art approaches. The obtained results successfully demonstrate the supremacy of the proposed technique in the classification of HSI.