Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
A novel, high-fidelity, shape-sensing technology, BendShape [1], is investigated as an expressive music controller for sound effects, direct sound manipulation, and voice synthesis. Various approaches are considered for developing mapping strategies that create transparent metaphors to facilitate expression for both the performer and the audience. We explore strategies in the input, intermediate, and output mapping layers using a two-step approach guided by Perry's Principles [2]. First, we use trial-anderror to establish simple mappings between single input parameter control and effects to identify promising directions for further study. Then, we compose a specific piece that supports different uses of the BendShape mappings in a performance context: this allows us to study a performer trying different types of expressive techniques, enabling us to analyse the role each mapping has in facilitating musical expression. We also investigate the effects these mapping strategies have on performer bandwidth. Our main finding is that the high fidelity of the novel BendShape sensor facilitates creating interpretable input representations to control sound representations, and thereby match interpretations that provide better expressive mappings, such as with vocal shape to vocal sound and bumpiness control; however, direct mappings of individual, independent sensor mappings to effects does not provide obvious advantages over simpler controls. Furthermore, while the BendShape sensor enables rich explorations for sound, the ability to find expressive interpretable shape-to-sound representations while respecting the performer's bandwidth limitations (caused by having many coupled input degrees of freedom) remains a challenge and an opportunity.
A novel, high-fidelity, shape-sensing technology, BendShape [1], is investigated as an expressive music controller for sound effects, direct sound manipulation, and voice synthesis. Various approaches are considered for developing mapping strategies that create transparent metaphors to facilitate expression for both the performer and the audience. We explore strategies in the input, intermediate, and output mapping layers using a two-step approach guided by Perry's Principles [2]. First, we use trial-anderror to establish simple mappings between single input parameter control and effects to identify promising directions for further study. Then, we compose a specific piece that supports different uses of the BendShape mappings in a performance context: this allows us to study a performer trying different types of expressive techniques, enabling us to analyse the role each mapping has in facilitating musical expression. We also investigate the effects these mapping strategies have on performer bandwidth. Our main finding is that the high fidelity of the novel BendShape sensor facilitates creating interpretable input representations to control sound representations, and thereby match interpretations that provide better expressive mappings, such as with vocal shape to vocal sound and bumpiness control; however, direct mappings of individual, independent sensor mappings to effects does not provide obvious advantages over simpler controls. Furthermore, while the BendShape sensor enables rich explorations for sound, the ability to find expressive interpretable shape-to-sound representations while respecting the performer's bandwidth limitations (caused by having many coupled input degrees of freedom) remains a challenge and an opportunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.