We demonstrate the design, fabrication, evaluation, and use of a self-powered microphone that is thin, flexible, and easily manufactured. Our technology is referred to as a Self-powered Audio Triboelectric Ultra-thin Rollable Nanogenerator (SATURN) microphone. This acoustic sensor takes advantage of the triboelectric nanogenerator (TENG) to transform vibrations into an electric signal without applying an external power source. The sound quality of the SATURN mic, in terms of acoustic sensitivity, frequency response, and directivity, is affected by a set of design parameters that we explore based on both theoretical simulation and empirical evaluation. The major advantage of this audio material sensor is that it can be manufactured simply and deployed easily to convert every-day objects and physical surfaces into microphones which can sense audio. We explore the space of potential applications for such a material as part of a self-sustainable interactive system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.