To guide therapeutic strategies and to monitor the state changes in the disease, a low-cost, portable, and easily fabricated microfluidic-chip-integrated three-dimensional (3D) microchamber was designed for capturing and analyzing breast cancer cells. Optimally, a colorimetric sensor array was integrated into a microfluidic chip to discriminate the metabolites of the cells. The ultraviolet polymerization characteristic of poly(ethylene glycol) diacrylate (PEGDA) hydrogel was utilized to rapidly fabricate a three-layer hydrogel microfluidic chip with the designed structure under noninvasive 365 nm laser irradiation. 2-Hydroxyethyl methacrylate (HEMA) was added to the prepolymer in order to increase the adhesive capacity of the microchip’s surface for capturing cells. 1-Vinyl-2-pyrrolidone (NVP) was designed to improve the toughness and reduce the swelling capacity of the hydrogel composite. A non-toxic 3D hydrogel microarray chip (60 mm × 20 mm × 3 mm) with low immunogenicity and high hydrophilicity was created to simulate the real physiological microenvironment of breast tissue. The crisscross channels were designed to ensure homogeneous seeding density. This hydrogel material displayed excellent biocompatibility and tunable physical properties compared with traditional microfluidic chip materials and can be directly processed to obtain the most desirable microstructure. The feasibility of using a PEGDA hydrogel microfluidic chip for the real-time online detection of breast cancer cells’ metabolism was confirmed using a specifically designed colorimetric sensor array with 16 kinds of porphyrin, porphyrin derivatives, and indicator dyes. The results of the principal component analysis (PCA), the hierarchical cluster analysis (HCA), and the linear discriminant analysis (LDA) suggest that the metabolic liquids of different breast cells can be easily distinguished with the developed PEGDA hydrogel microfluidic chip. The PEGDA hydrogel microfluidic chip has potential practicable applicability in distinguishing normal and cancerous breast cells.