Targeted drug delivery using a microrobot is a promising technique capable of overcoming the limitations of conventional chemotherapy that relies on body circulation. However, most studies of microrobots used for drug delivery have only demonstrated simple mobility rather than precise targeting methods and prove the possibility of biodegradation of implanted microrobots after drug delivery. In this study, magnetically guided self‐rolled microrobot that enables autonomous navigation‐based targeted drug delivery, real‐time X‐ray imaging, and microrobot retrieval is proposed. The microrobot, composed of a self‐rolled body that is printed using focused light and a surface with magnetic nanoparticles attached, demonstrates the loading of doxorubicin and an X‐ray contrast agent for cancer therapy and X‐ray imaging. The microrobot is precisely mobilized to the lesion site through automated targeting using magnetic field control of an electromagnetic actuation system under real‐time X‐ray imaging. The photothermal effect using near‐infrared light reveals rapid drug release of the microrobot located at the lesion site. After drug delivery, the microrobot is recovered without potential toxicity by implantation or degradation using a magnetic‐field‐switchable coiled catheter. This microrobotic approach using automated control method of the therapeutic agents‐loaded microrobot has potential use in precise localized drug delivery systems.
Microrobots that can be precisely guided to target lesions have been studied for in vivo medical applications. However, existing microrobots have challenges in vivo such as biocompatibility, biodegradability, actuation module, and intra- and postoperative imaging. This study reports microrobots visualized with real-time x-ray and magnetic resonance imaging (MRI) that can be magnetically guided to tumor feeding vessels for transcatheter liver chemoembolization in vivo. The microrobots, composed of a hydrogel-enveloped porous structure and magnetic nanoparticles, enable targeted delivery of therapeutic and imaging agents via magnetic guidance from the actuation module under real-time x-ray imaging. In addition, the microrobots can be tracked using MRI as postoperative imaging and then slowly degrade over time. The in vivo validation of microrobot system–mediated chemoembolization was demonstrated in a rat liver with a tumor model. The proposed microrobot provides an advanced medical robotic platform that can overcome the limitations of existing microrobots and current liver chemoembolization.
Stomach cancer is a global health concern as millions of cases are reported each year. In the present study, we developed a pH-responsive microrobot with good biocompatibility, magnetic-field controlled movements,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.