Newly formed memories are spontaneously reactivated during sleep, leading to their strengthening. This reactivation process can be manipulated by reinstating learning-related stimuli during sleep, a technique termed targeted memory reactivation. Numerous studies have found that delivering cues during sleep improves memory for simple associations, in which one cue reactivates one tested memory. However, real-life memories often live in rich, complex networks of associations. In this review, we will examine recent forays into investigating how targeted sleep reactivation affects memories within complex paradigms, in which one cue can reactivate multiple tested memories. A common theme across studies is that reactivation consequences do not merely depend on whether memories reside in complex arrangements, but on how memories interact with one another during acquisition. We therefore emphasize how intricate study design details that alter the nature of learning and/or participant intentions impact reactivation outcomes. In some cases, complex networks of memories interact harmoniously to bring about mutual memory benefits; in other cases, memories may interact antagonistically and produce selective impairments in retrieval. Ultimately, although this burgeoning area of research has yet to be systematically explored, results suggest that the fate of reactivated stimuli within complex arrangements depends on how they were learned.