The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H 2 O 2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.
Dental caries remains an enormous health problem worldwide (1-4). The current view of the initiation and progression of dental caries is one of a dynamic process in which the normal balance between the complex environmental factors that control demineralization and remineralization of the tooth is disrupted in a way that favors the loss of tooth mineral. Demineralization is driven primarily by microbial fermentation of carbohydrates to organic acids, which can lower the pH of oral biofilms to the extent that there is significant dissolution of tooth mineral. Alkalization of oral biofilms occurs during fasting periods and is attributable to salivary clearance of acids, buffering of oral biofilms by host-derived and microbially derived components, and the production of basic compounds by microbial metabolism of amino acids, polyamines, urea, and other compounds (5-10). Development or worsening of a carious lesion occurs when acid-mediated enamel demineralization predominates and is associated with changes in the composition and biochemical activities of the associated microflora. Evidence is now accumulating from a variety of sources that supports that alkali generation, particularly in the form of ammonia, plays a major role in pH homeostasis in oral biofilms and inhibits the initiation and progre...