Summary Streptococcus mutans regulates genetic competence through a complex network that receives inputs from a number of environmental stimuli, including two signaling peptides designated as CSP and XIP. The response of the downstream competence genes to these inputs shows evidence of stochasticity and bistability and has been difficult to interpret. We have used microfluidic, single-cell methods to study how combinations of extracellular signals shape the response of comX, an alternative sigma factor governing expression of the late competence genes. We find that the composition of the medium determines which extracellular signal (XIP or CSP) can elicit a response from comX and whether that response is unimodal or bimodal across a population of cells. In a chemically defined medium, exogenous CSP does not induce comX, whereas exogenous XIP elicits a comX response from all cells. In complex medium, exogenous XIP does not induce comX, whereas CSP elicits a bimodal comX response from the population. Interestingly, bimodal behavior required an intact copy of comS, which encodes the precursor of XIP. The comS-dependent capability for both unimodal and bimodal response suggests that a constituent – most likely peptides – of complex medium interacts with a positive feedback loop in the competence regulatory network.
Genetic competence in Streptococcus mutans is a transient state that is regulated in response to multiple environmental inputs. These include extracellular pH and the concentrations of two secreted peptides, designated CSP (competence-stimulating peptide) and XIP (comX-inducing peptide). The role of environmental cues in regulating competence can be difficult to disentangle from the effects of the organism's physiological state and its chemical modification of its environment. We used microfluidics to control the extracellular environment and study the activation of the key competence gene comX. We find that the comX promoter (P comX ) responds to XIP or CSP only when the extracellular pH lies within a narrow window, about 1 pH unit wide, near pH 7. Within this pH range, CSP elicits a strong P comX response from a subpopulation of cells, whereas outside this range the proportion of cells expressing comX declines sharply. Likewise, P comX is most sensitive to XIP only within a narrow pH window. While previous work suggested that comX may become refractory to CSP or XIP stimulus as cells exit early exponential phase, our microfluidic data show that extracellular pH dominates in determining sensitivity to XIP and CSP. The data are most consistent with an effect of pH on the ComR/ComS system, which has direct control over transcription of comX in S. mutans. Genetic competence is a transient physiological state during which a bacterial cell is able to internalize DNA from its environment. Competence occurs in many bacterial species but was first described in the streptococci, where its regulation has been the subject of intensive study (1, 2). In the oral pathogen Streptococcus mutans, competence is important not only because it contributes to genetic diversity but also because its regulation is closely intertwined with the manifestation of virulence-related behaviors, including bacteriocin production, biofilm formation, tolerance of low pH, and carbohydrate catabolism (3-7). S. mutans regulates competence in part through two secreted quorum-sensing peptides, designated competence-stimulating peptide (CSP) and comX-inducing peptide (XIP). Interestingly, the activity of these peptides depends on environmental parameters, including pH, carbohydrate, and media (8-11). Through mechanisms that are not well understood, the competence regulon integrates the peptide signals with environmental and internal parameters (12, 13) to trigger a transient state of competence during early exponential growth phase.The interaction of the extracellular environment with competence and related virulence behaviors is important in the context of oral biofilms. Heterogeneous local environments of pH and oxygen/redox, carbohydrate, and secreted-peptide concentrations in a biofilm could potentially lead to spatial variations in virulence gene expression in S. mutans (14-17). pH is particularly important because the fermentation of carbohydrates by S. mutans generates acids that can rapidly modify the pH of the environment. The pH in a biofilm ...
Simultaneous measurement of proteins and mRNA in single cells enables quantitative understanding and modeling of cellular functions. Here, we present an automated microfluidic system for multi-parameter and ultra-sensitive protein/mRNA measurements in single cells. Our technology improves the sensitivity of digital proximity ligation assay by up to 55-fold, with a detection limit of 2277 proteins per cell and with detection efficiency of as few as 29 protein molecules. Our measurements using this system reveal higher mRNA/protein correlation in single mammalian cells than previous estimates. Furthermore, time-lapse imaging of herpes simplex virus 1 infected epithelial cells enabled by our device shows that expression of ICP4 -a major transcription factor regulating hundreds of viral genes- is only partially correlated with viral protein counts, suggesting that many cells go through abortive infection. These results highlight the importance of high-sensitivity protein/mRNA quantification for understanding fundamental molecular mechanisms in individual cells.
The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCEThe signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability.
The behavior of the NF-κB pathway as a differentiator circuit enables the pathway to track changes in cytokine dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.