To save land resources, the construction of the high-voltage direct current (HVDC) and high-voltage alternating current (HVAC) hybrid transmission lines in the same corridor is inevitable. To provide suggestions for the construction of the AC/DC parallel lines, the hybrid ionized field of AC/DC transmission lines was calculated by the meshless local Petorv-Galerkin (MLPG) method for the first time. In this method, the radius of local sub-domain is adjusted to the nodes close to the global boundary, but not exactly on the boundary. It can avoid the boundary integral, as well as having simplified calculation. The method was validated by comparing with measured results and calculation results. The MLPG method is beneficial to obtaining high-precision results by constructing the more complex shape function. Finally, a field distribution of the parallel line of about ±800 kV DC/500 kV AC was calculated. Moreover, the influence of different parallel spacing and AC voltage level on the hybrid ionized field was analyzed, which provides theoretical basis for real parallel lines design.