2014
DOI: 10.5957/josr.58.2.110038
|View full text |Cite
|
Sign up to set email alerts
|

Ship Hull Structural Multiobjective Optimization by Evolutionary Algorithm

Abstract: An evolutionary algorithm for multiobjective optimization of the structural elements of the large spatial sections of ships is presented. The evolutionary algorithm where selection takes place based on the aggregated objective function combined with domination attributes as well as distance to the asymptotic solution is proposed and applied to solve the problem of optimizing structural elements with respect to their weight and surface area on a high-speed vehicle-passenger catamaran structure with several desi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2015
2015
2021
2021

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 30 publications
0
3
0
1
Order By: Relevance
“…Figure 7 presents the peak levels of the resource consumption achievable for every sequence. The peak resource consumption fits into the range [10,32]. The highest peak values (32) have 4 sequences shown in Figure 8.…”
Section: Criteria For the Selection And Limitation Of The Assembly Sementioning
confidence: 97%
See 2 more Smart Citations
“…Figure 7 presents the peak levels of the resource consumption achievable for every sequence. The peak resource consumption fits into the range [10,32]. The highest peak values (32) have 4 sequences shown in Figure 8.…”
Section: Criteria For the Selection And Limitation Of The Assembly Sementioning
confidence: 97%
“…peak Peak rc G rc ≤ t r (10) For the studied case 5 connections determined the number of the acceptable sequences depending on the values of the limiting parameters t F and rc Peak (Figure 10).…”
Section: Criteria For the Selection And Limitation Of The Assembly Sementioning
confidence: 99%
See 1 more Smart Citation
“…83 El método estocástico se basa en obtener los puntos globales óptimos mediante la dispersión de puntos al azar por todos los espacios de diseño. Existen dos enfoques dentro de este método, por un lado para el caso de una única función objetivo, el Algoritmo Genético [349] y la Estrategia Evolutiva [350] y, por otro lado, para el caso de funciones multiobjetivo, también se han desarrollado investigaciones acerca del Algoritmo Genético [351] y la Estrategia Evolutiva ( [352], [353] y [354]).…”
Section: Formulación Del Problema De Programación No Lineal (Ppnl)unclassified