The notion of plane shock waves is a macroscopic, very fruitful idealization of near discontinuous disturbance propagating at supersonic speed. Such a picture is comparable to the picture of shorelines seen from a very high altitude. When viewed at the grain scale where the structure of solids is inherently heterogeneous and stochastic, features of shock waves are non-laminar and field variables, such as particle velocity and pressure, fluctuate. This paper reviews select aspects of such fluctuating nonequilibrium features of plane shock waves in solids with focus on grain scale phenomena and raises the need for a paradigm change to achieve a deeper understanding of plane shock waves in solids.