High resolution three‐dimensional simulations are presented of the interactions between turbulent shear flows moving with mean relative velocity ΔU below a stably stratified region with buoyancy frequency (N+). An artificial forcing in the simulation, with a similar effect as a small negative eddy viscosity, leads to a steady state flow which models thin interfaces. Characteristic eddies of the turbulence have length scale L. If the bulk Richardson number Rib=(LN+/ΔU)2 lies between lower and upper critical values denoted as Ri∗(<1/5) and
trueR~i(∼0.3em0.3em0.3em1), a “detached” layer is formed in the stable region with thickness L+ greater than L, in which rotational fluctuations and inhomogeneous turbulence are induced above an interface with large gradients of density/temperature. Comparisons are made with shear turbulent interfaces with no stratification. When
Rib>trueR~i, vertical propagating waves are generated, with shear stresses carrying significant momentum flux and progressively less as Rib increases. Simulations for a jet and a turbulent mixing layer show similar results. A perturbation analysis, using inhomogeneous Rapid Distortion Theory, models the transition zone between shear eddies below the interface and the fluctuations in the stratified region, consistent with the simulations. It demonstrates how the wave‐momentum‐flux has a maximum when Rib∼2 and then decreases as Rib increases. This coupling mechanism between eddies and waves, which is neglected in eddy viscosity models for shear layers, can drive flows in the stratosphere and the deeper ocean, with significant consequences for short‐ and long‐term flow phenomena. The “detached layer” is a mechanism that contributes to the formation of stratus clouds and polluted layers above the atmospheric boundary layer.