1977
DOI: 10.1143/jpsj.43.1441
|View full text |Cite
|
Sign up to set email alerts
|

Shock Wave and Hole Type Soliton of Nonlinear Self-Dual Network Equation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

1978
1978
2020
2020

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(3 citation statements)
references
References 10 publications
0
3
0
Order By: Relevance
“…It is known that self-dual network can also be reduced to the discrete analogue of the mKdV equation [7]. we note that there are many other differential-difference equations which can be transformed into the dmKdV equation [8][9][10][11][12][13][14][15].…”
Section: Introductionmentioning
confidence: 98%
“…It is known that self-dual network can also be reduced to the discrete analogue of the mKdV equation [7]. we note that there are many other differential-difference equations which can be transformed into the dmKdV equation [8][9][10][11][12][13][14][15].…”
Section: Introductionmentioning
confidence: 98%
“…The infinitely many conservation laws of equation (1.1) with σ = 1 were given [55,56]. The IST was used to find some shock wave and hole-type soliton solutions with non-zero asymptotic values of equation (1.1) with σ = −1 [57]. Equation (1.1) with σ = 1 and saturable nonlinearity was also discussed by the IST to find four types of solitons with non-zero asymptotic values [58].…”
Section: Introductionmentioning
confidence: 99%
“…(4) has been explored extensively in works [14,15]. As far as we could verify, relatively less work is being performed for the symbolic computation of exact solutions to fractional-type DDEs while there has been a considerable amount of work done in finding exact solutions to polynomial DDEs.…”
Section: Introductionmentioning
confidence: 99%