The mechanics of downstream blast wave attenuation caused by interaction with obstacles arranged into a pre-fractal shape based on the Sierpinski carpet was numerically investigated using a high-fidelity CFD solver. The blast mitigation was qualitatively and quantitatively assessed for four pre-fractal iterations at three different scaled distances ( Z = 1.87, 2.24, 2.99 m/kg1/3). Mitigation was seen to occur in zones associated with the location of destructive wave interference patterns in the downstream region. Crucially, these zones were found to widen spatially with increasing pre-fractal iteration, and strong shock-shock interactions that result in load amplification, commonly encountered in downstream regions of a solitary block-like obstacle, were not observed for the more fractal-like obstacles. The mechanisms of attenuation are explored in terms of wave impedance. It is found that pre-fractals reduce wave transmission in the downstream, increase reflection of the blast wave, and enhance trapping within the confines of the pre-fractal obstacle, dramatically changing the directionality and hence the strength of the transmitted wave. Reductions in peak pressure of up to 60% and peak specific impulse of up to 40% were recorded for the highest iteration pre-fractal, that is, obstacles that most closely represent a true fractal, thereby highlighting the effectiveness of such shapes for protective structure design for improved blast mitigation.