Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Journal of Econometrics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be re ected in this document. Changes may have been made to this work since it was submitted for publication. A de nitive version was subsequently published in Journal of Econometrics, 180, 2, June 2014, 10.1016/j.jeconom.2014.03.001.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTWe propose a nonparametric estimation and inference for conditional density based Granger causality measures that quantify linear and nonlinear Granger causalities. We first show how to write the causality measures in terms of copula densities. Thereafter, we suggest consistent estimators for these measures based on a consistent nonparametric estimator of copula densities. Furthermore, we establish the asymptotic normality of these nonparametric estimators and discuss the validity of a local smoothed bootstrap that we use in finite sample settings to compute a bootstrap bias-corrected estimator and to perform statistical tests. A Monte Carlo simulation study reveals that the bootstrap bias-corrected estimator behaves well and the corresponding test has quite good finite sample size and power properties for a variety of typical data generating processes and different sample sizes. Finally, two empirical applications are considered to illustrate the practical relevance of nonparametric causality measures.JEL Classification: C12; C14; C15; C19; G1; G12; E3; E4.