ABSTRACT:The moisture absorption and mechanical properties of wood flour-filled polypropylene composites in a hydrothermal environment have been studied by immersing the composites in water at 23, 60, and 100°C. The degree of moisture absorption was found to be dependent on the modification of matrix, the weight percentage, mesh size, and surface treatment of wood flours. It increased with increasing the immersion temperature. The tensile strength of all composites with wood flours of different contents, mesh sizes, and surface treatments increased after immersion in water baths of various temperatures, to either greater or lesser extents. The flexural strength and modulus followed a similar trend when immersed in water at ambient temperature. However, the contrary was true for composites when immersed in 60 and 100°C water baths. The impact strength increased after immersion in water at each immersion temperature, and the extent of such increment decreased with increasing the immersion temperature.