Rainfall-runoff simulation is vital for planning and controlling flood control events. Hydrology modeling using Hydrological Engineering Center—Hydrologic Modeling System (HEC-HMS) is accepted globally for event-based or continuous simulation of the rainfall-runoff operation. Similarly, machine learning is a fast-growing discipline that offers numerous alternatives suitable for hydrology research’s high demands and limitations. Conventional and process-based models such as HEC-HMS are typically created at specific spatiotemporal scales and do not easily fit the diversified and complex input parameters. Therefore, in this research, the effectiveness of Random Forest, a machine learning model, was compared with HEC-HMS for the rainfall-runoff process. Furthermore, we also performed a hydraulic simulation in Hydrological Engineering Center—Geospatial River Analysis System (HEC-RAS) using the input discharge obtained from the Random Forest model. The reliability of the Random Forest model and the HEC-HMS model was evaluated using different statistical indexes. The coefficient of determination (R2), standard deviation ratio (RSR), and normalized root mean square error (NRMSE) were 0.94, 0.23, and 0.17 for the training data and 0.72, 0.56, and 0.26 for the testing data, respectively, for the Random Forest model. Similarly, the R2, RSR, and NRMSE were 0.99, 0.16, and 0.06 for the calibration period and 0.96, 0.35, and 0.10 for the validation period, respectively, for the HEC-HMS model. The Random Forest model slightly underestimated peak discharge values, whereas the HEC-HMS model slightly overestimated the peak discharge value. Statistical index values illustrated the good performance of the Random Forest and HEC-HMS models, which revealed the suitability of both models for hydrology analysis. In addition, the flood depth generated by HEC-RAS using the Random Forest predicted discharge underestimated the flood depth during the peak flooding event. This result proves that HEC-HMS could compensate Random Forest for the peak discharge and flood depth during extreme events. In conclusion, the integrated machine learning and physical-based model can provide more confidence in rainfall-runoff and flood depth prediction.