Soil temperature has an important role in agricultural, hydrological, meteorological and climatological studies. In the present research, monthly mean soil temperature at four different depths (5, 10, 50 and 100 cm) was estimated using artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). The monthly mean soil temperature data of 31 stations over Iran were employed. In this process, the data of 21 and 10 stations were used for training and testing stages of used models, respectively. Furthermore, the geographical information including latitude, longitude and altitude as well as periodicity component (the number of months) was considered as inputs in the mentioned intelligent models. The results demonstrated that the ANN and ANFIS models had good performance in comparison with the GEP model. Nevertheless, the ANFIS generally performed better than ANN model.