2015
DOI: 10.1007/s12544-015-0170-8
|View full text |Cite
|
Sign up to set email alerts
|

Short-term traffic flow prediction using seasonal ARIMA model with limited input data

Abstract: Background Accurate prediction of traffic flow is an integral component in most of the Intelligent Transportation Systems (ITS) applications. The data driven approach using Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) models reported in most studies demands sound database for model building. Hence, the applicability of these models remains a question in places where the data availability could be an issue. The present study tries to overcome the above issue by proposing a prediction scheme usin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
246
0
6

Year Published

2016
2016
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 596 publications
(252 citation statements)
references
References 24 publications
0
246
0
6
Order By: Relevance
“…En las tablas 2, 3 y 4 se presentan las proyecciones para los artículos que tienen un MAPE menor de 20% de error, con la finalidad de presentar un pronóstico más preciso. Dicho porcentaje concuerda por lo expuesto por Kumar y Vanajakshi (2015), que indican que cualquier pronóstico con un valor MAPE de menos de 10% puede ser considerado altamente preciso, 11-20% es bueno, 21 a 50% es razonable y 51% o más es incorrecto.…”
Section: Proyección De Las Ventasunclassified
“…En las tablas 2, 3 y 4 se presentan las proyecciones para los artículos que tienen un MAPE menor de 20% de error, con la finalidad de presentar un pronóstico más preciso. Dicho porcentaje concuerda por lo expuesto por Kumar y Vanajakshi (2015), que indican que cualquier pronóstico con un valor MAPE de menos de 10% puede ser considerado altamente preciso, 11-20% es bueno, 21 a 50% es razonable y 51% o más es incorrecto.…”
Section: Proyección De Las Ventasunclassified
“…Therefore, a new method should be proposed to solve such problems. Currently, there are some traditional statistical‐based models, such as Holt‐Winters model and the Auto Regressive Integrated Moving Average (ARIMA) model . The Holt‐Winters model is used to predict the electricity consumption of the data centers, which can remarkably increase the energy efficiency of data centers .…”
Section: Introductionmentioning
confidence: 99%
“…E-mail: kevinwong@gdut.edu.cn *Laboratory of Cyber-Physical System, Department of Computer Science and Technology, School of Computes, Guangdong University of Technology, Guangzhou, China **School of Computes, Guangdong University of Technology, Guangzhou, China to solve such problems. Currently, there are some traditional statistical-based models, such as Holt-Winters model [4,5] and the Auto Regressive Integrated Moving Average (ARIMA) model [6,7]. The Holt-Winters model is used to predict the electricity consumption of the data centers, which can remarkably increase the energy efficiency of data centers [8].…”
Section: Introductionmentioning
confidence: 99%
“…He explained the Hurst phenomenon and extended Brownian motion to establish a fractional Brownian stochastic model to simulate annual runoff time series [28,29]. Hosking proposed the ARIMA model to simulate annual runoff processes [30], and the model has been applied broadly [31][32][33][34][35]. Tokinaga et al combined fractal and Wavelet methods to predict temporal processes with fractal features [36], and this method was used to forecast the runoff of rivers such as the Songhua River, the Danube River, and the Pungwe River [37][38][39][40].…”
Section: Introductionmentioning
confidence: 99%