“…Among other approaches let us mention (i) a transitionless tracking algorithm or "counterdiabatic" approach that adds to the original Hamiltonian extra terms to cancel transitions in the adiabatic or superadiabatic bases [8][9][10][11][12][13]; (ii) inverse engineering of the external driving [3,4,6,[21][22][23][24][25][26] based on Lewis-Riesenfeldt invariants [27], which has been applied in several expansion experiments [25,26]; (iii) optimal control (OC) methods [5,7,14,16], sometimes combined with other methods to enhance their performance [4,5,7]; (iv) the fast-forward (FF) approach advocated by Masuda and Nakamura [19,28]; (v) parallel adiabatic passage [29][30][31][32].…”