Black Silicon nanostructures are fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) in a gas mixture of SF6 and O2 at non-cryogenic temperatures. The structure evolution and the dependency of final structure geometry on the main processing parameters gas composition and working pressure are investigated and explained comprehensively. The optical properties of the produced Black Silicon structures, a distinct antireflection and light trapping effect, are resolved by optical spectroscopy and conclusively illustrated by optical simulations of accurate models of the real nanostructures. By that the structure sidewall roughness is found to be critical for an elevated reflectance of Black Silicon resulting from non-optimized etching processes. By analysis of a multitude of structures fabricated under different conditions, approximate limits for the range of feasible nanostructure geometries are derived. Finally, the technological applicability of Black Silicon fabrication by ICP-RIE is discussed