The unfolded protein response (UPR) is a cellular response highly conserved in eukaryotes to obviate accumulation of misfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) catalyzes the cytoplasmic splicing of mRNA encoding bZIP transcription factors to activate the UPR signaling pathway. Arabidopsis IRE1 was recently shown to be involved in the cytoplasmic splicing of bZIP60 mRNA. In the present study, we demonstrated that an Arabidopsis mutant with defects in two IRE1 paralogs showed enhanced cell death upon ER stress compared with a mutant with defects in bZIP60 and wild type, suggesting an alternative function of IRE1 in the UPR. Analysis of our previous microarray data and subsequent quantitative PCR indicated degradation of mRNAs encoding secretory pathway proteins by tunicamycin, DTT, and heat in an IRE1-dependent manner. The degradation of mRNAs localized to the ER during the UPR was considered analogous to a molecular mechanism referred to as the regulated IRE1-dependent decay of mRNAs reported in metazoans. Another microarray analysis conducted in the condition repressing transcription with actinomycin D and a subsequent Gene Set Enrichment Analysis revealed the regulated IRE1-dependent decay of mRNAs-mediated degradation of a significant portion of mRNAs encoding the secretory pathway proteins. In the mutant with defects in IRE1, genes involved in the cytosolic protein response such as heat shock factor A2 were upregulated by tunicamycin, indicating the connection between the UPR and the cytosolic protein response.heat stress | protein folding | bioinformatics T he unfolded protein response (UPR) or the endoplasmic reticulum (ER) stress response is a cellular response that is highly conserved in eukaryotes to obviate accumulation of misfolded proteins and to alleviate protein overload in the ER (1-3). Inositol-requiring enzyme 1 (IRE1), which is the primary transducer of the UPR in various organisms, catalyzes the unconventional or cytoplasmic splicing of mRNAs encoding bZIP transcription factors to up-regulate the UPR-related genes, such as genes for the ER-resident molecular chaperones, through its ribonuclease domain. The cytoplasmic splicing by IRE1 activates the bZIP transcription factors HAC1, XBP1, and bZIP60 in yeast, animals, and plants, respectively, by producing active proteins. Although the fundamental mechanism of the cytoplasmic splicing by IRE1 appears to be highly conserved, the mechanism of transcription factor activation is diverse among organisms (4).In addition to the cytoplasmic splicing of mRNAs for transcription factors, other functions of metazoan IRE1 have been reported. One such function is the degradation of mRNAencoding proteins in the secretory pathway referred to as regulated IRE1-dependent decay (RIDD) (5-7). RIDD is considered to contribute to reducing the amount of proteins entering the ER in the UPR. The metazoan UPR has an alternative mechanism to reduce the amount of protein entering the ER, and this mechanism is regulated by PKR-li...