Vehicular ad-hoc networks are expected to be a key enabling technology for the development of future Intelligent Transportation Systems (ITSs), by delivering a wide range of services, spanning from safety alerting to route guidance and entertainment. Most of ITS applications require vehicles on the road to access the Internet through wireless communications with road-side units. The high vehicle mobility coupled with the large amount of investments required for deploying a complete roadside infrastructure will cause vehicle-to-roadside (V2R) connectivity to be poor, short-lived, and intermittent by negatively affecting the performance of envisioned applications. The purpose of this paper is to gain a deeper insight into possible issues related to service access and provisioning when considering the multi-channel operations envisioned by the IEEE 802.11p/WAVE (Wireless Access in Vehicular Environments) standards. We investigate network connectivity offered by roadside and moving WAVE providers in a realistic urban scenario where wireless propagation is hindered by obstructions. Results prove that hybrid solutions complementing roadside providers with moving ones lead to improved connectivity and data delivery performance, by potentially incurring lower deployment costs.