The aim of this study was to evaluate the effects of a natural soda water [Shi Han Quan (SHQ)] on hyperglycemia and plasma metabolic profiling and explore the mechanism using metabolomics techniques. Kun‐Ming mice weighing 26 ± 2 g were used for the hyperglycemia animal model with alloxan and divided into control, hyperglycemia (HG), and HG + SHQ soda water (SHQ) groups. The experiment lasted for 30 days. The plasma metabolomic profiling of mice was determined using ultrahigh‐pressure liquid chromatography‐quadrupole‐time of flight‐mass spectrometry. After the mice drank SHQ soda water, the levels of insulin and blood glucose were significantly lower in the SHQ group compared with the control group, and the level of insulin sensitivity [insulin sensitivity index (ISI)] was significantly higher in the SHQ group compared with the HG group. The mice in the different groups after SHQ intervention could be separated into distinct clusters, and nine major plasma metabolites with significant differences between groups were found closely associated with blood glucose and ISI. The metabolic pathway analysis of these metabolites involved abnormal fatty acid oxidation and phospholipid, acylcarnitine, and corticoid metabolism. The results suggested the metabolic changes and possible mechanism of SHQ improving the alloxan‐induced HG, and the findings provided insights into the prevention and control of HG and diabetes.