Ultrahot Jupiters are ideal candidates to explore with high-resolution emission spectra. Detailed theoretical studies are necessary to investigate the range of spectra that we can expect to see from these objects throughout their orbit, because of the extreme temperature and chemical longitudinal gradients that exist across their dayside and nightside regions. Using previously published 3D general circulation models of WASP-76b with different treatments of magnetic drag, we postprocess the 3D atmospheres to generate high-resolution emission spectra for two wavelength ranges, throughout the planet’s orbit. We find that the high-resolution emission spectra vary strongly as a function of phase, at times showing emission features, absorption features, or both, which are a direct result of the 3D structure of the planet. At phases exhibiting both emission and absorption features, the Doppler shift differs in direction between the two spectral features, making them differentiable, instead of canceling each other out. Through the use of cross correlation, we find different patterns in net Doppler shift for models with different treatments of drag: the nightside spectra show opposite signs in their Doppler shift, while the dayside phases display a reversal in the trend of net shift with phase. Finally, we caution researchers against using a single spectral template throughout the planet’s orbit; this can bias the corresponding net Doppler shift returned, as it can pick up on a bright region on the edge of the planet disk that is highly redshifted or blueshifted.