Transapical mitral valve repair with neochordae implantation is a relatively new minimally invasive technique to treat primary mitral regurgitation. Quantifying the complex biomechanical interaction and interdependence between the left heart structures and the neochordae during this procedure is technically challenging. The aim of this parametric computational study is to investigate the immediate effects of neochordae number and complexity of leaflet prolapse on restoring physiologic left heart dynamics after optimal transapical neochordae repair procedures. Neochordae implantation using three and four sutures was modeled under three clinically relevant prolapse conditions: isolated P2, multi‐scallop P2/P3, and multi‐scallop P2/P1. A fluid‐structure interaction (FSI) modeling framework was used to evaluate the left heart dynamics under baseline, prerepair, and postrepair states. Despite immediate restoration of leaflet coaptation and no residual mitral regurgitation in all postrepair models, the average and peak stresses in the repaired scallop(s) increased >40% and >100%, respectively, compared with the baseline state. Additionally, anterior mitral leaflet marginal chordae tension increased >30%, while posterior mitral leaflet chordae tension decreased at least 30%. No marked differences in hemodynamic performance, in native and neochordae forces, and in leaflet stress were found when implanting three or four sutures. We report, to our knowledge, the first set of time‐dependent in silico FSI human neochordae tension measurements during transapical neochordae repair. This work represents a further step towards an improved understanding of the biomechanical outcomes of minimally invasive mitral valve repair procedures.